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The distribution of zeros of the partition function in the complex magnetic field 
plane is studied for linear chains of n-vector spins and finite-width strips of Ising 
spins with nearest-neighbor interactions. By means of transfer matrix/operator 
techniques, the exponent o characterizing the behavior of the density of zeros 
near the Yang-Lee edge is shown to have the exact value o = -  1/2 (i) 
analytically for n-vector chains in the high-temperature limit and for Ising strips 
in the low-temperature limit, and (ii) numerically for intermediate temperatures. 
The crossover of e from its n-vector value to its spherical model value, o = 1/2, 
as n-->oo, as well as from d = l  to d = 2  Ising as the width of the strips 
increases, seems to proceed by an accumulation of branch points in the 
spectrum of the transfer operator; for the n-vector models the position of the 
gap edge and the free energy at the edge approach their spherical model values 
with corrections of order 1/n ~ with ~ ~ 3/4. 

KEY WORDS: Yang-Lee zeros; complex magnetic field; one-dimensional 
models; transfer operators. 

1. INTRODUCTION 

A number of exactly solvable statistical mechanical models are provided by 
one-dimensional systems. Unfortunately, a one-dimensional system with 
short-range interactions will not, in general, display a phase transition, (1) so 
that these models are of limited interest in the study of ordinary critical 
behavior. On the other hand, Yang-Lee edge singularities generally do 
occur in these models; in fact, the nature of the edge singularity is known 
exactly for the ferromagnetic Ising (2) and spherical model (3) chains. In 
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these models the zeros of the partition function concentrate, in the thermo- 
dynamic limit of an infinitely large system, along the imaginary axis of the 
reduced magnetic field plane, 

h = H / k ~ T =  h'+ ih" (1) 

where H is the applied magnetic field in energy units, k B is Boltzmann's 
constant, and T is the absolute temperature. In the limit, a density of zeros, 
g(h"), may be defined, so that as N, the number of spins in the system, 
becomes infinite, the number of zeros lying in the infinitesimal interval 
between ih" and i(h" + dh") becomes asymptotically equal to Ng(h")dh". 
For any temperature T > 0, there is a gap on the imaginary axis, with edges 
at ___ iho(T ), within which the density of zeros vanishes; near the edges of 
the gap g(h") displays a power law variation, ~4) 

g(h")--[Ih" I - ho(T)] ~ for Ih"l~ho(T) + 

= 0 for I h"l < h0(T) (2) 

where the exponent o has the value - 1/2 in the Ising chain (2~ and + 1/2 
for the spherical model. (3) 

Indeed it is shown in Ref. 5 that the result o = - 1 / 2  follows for a 
general one-dimensional system from a simple hypothesis concerning the 
spectrum of the system's transfer matrix. It is known (6) that zeros of the 
partition function may only occur in the thermodynamic limit in regions in 
which no single eigenva!ue of the transfer matrix has largest modulus, i.e., 
where two or more eigenvalues share this modulus. Moreover, for a general 
class of Ising systems this is known to occur (7'8) only along a set of analytic 
arcs in the appropriate complex field plane, even if the zeros are not 
confined to the imaginary axis; this criterion has been employed by several 
authors (9'1~ to locate the zero density for a number of models. The 
conclusion o = - 1 / 2  follows (5) specifically from the further assumption 
that in an imaginary reduced magnetic field, h = ih" (in the models we will 
consider, the zeros are to be found here), the transfer matrix or operator 
has a single eigenvalue of largest modulus for Ih"l < ho(T), while for 
Ih"l ~ ho(T) the two largest eigenvalues have equal moduli and all others 
are smaller in magnitude, so that h = + iho(T ) are branch points in the 
spectrum at which the two dominant eigenvalues--and no others--merge. 
The purpose of the present work is to check the validity of this assumption 
for two interesting classes of systems. 

Since the spherical model represents the infinite-component limit of an 
isotropically coupled n-vector spin model, (H-13) it is of interest to investi- 
gate the dependence of the exponent o on n. (z4) However, renormalization 
group arguments (~4) indicate that o will be independent of n for finite n; this 
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is also known to be true for lattice models with nearest-neighbor interac- 
tions in the asymptotic high-temperature limit. (15) In order to investigate 
this, we have examined ferromagnetic n-vector chains, consisting of L 
n-dimensional unit vector spin variables s i -- (s t 1), s}2) . . . . .  s}")), interacting 
through the Hamiltonian 

L L 
~-~ --//Or E Si" Si+ 1 -- BHE s/(1) (3) 

i=1 i=1 

where the exchange coupling J is positive and we identify sL+ 1 ~- sl. The 
factors of n are inserted to ensure that the thermodynamic free energy per 
spin component continues to exist in the spherical model limit n ~ oo. On 
setting n = 1, one recovers the spin-1/2 Ising chain. By numerically calcu- 
lating the free energy per spin component in the thermodynamic limit 
L ~ oo, we find that o = - 1/2 describes the Yang-Lee edge singularity for 
a//values of n and T examined. In addition, we find that the position of the 
Yang-Lee edge and the value of the free energy per spin component at the 
edge approach their spherical model values as n ~ oo with corrections (5) of 
order approximately 1/n ~ with ~ ~ 3/4. 

Numerical studies of the Yang-Lee edge singularity in the two- 
dimensional Ising model (4'14-18) at temperatures above critical indicate that 
the value of o in this model is not - 1 / 2 ,  but is appreciably higher. 
High-temperature series expansions give estimates (15) near -0.163, in good 
agreement with c-expansion (16) and phenomenological renormalization 
group(17) estimates, (although real-space renormalization studies(18) give 
estimates near -0 .22  to -0.27). However, the two-dimensional model can 
be viewed as the infinite-width limit of Ising models on essentially one- 
dimensional lattices having finite width and infinite length. Since strong 
analogies exist between the Yang-Lee edge and an ordinary critical 
point, (4'14) one would expect that the edge singularity for these finite-width 
models should always be given by the one-dimensional exponent o = 
-1/2. We have investigated this point by examining Ising ferromagnets 
with nearest-neighbor interactions on m • r162 strips with periodic boundary 
conditions. That is, we consider an Ising lattice which may be viewed as a 
stack of L layers, where each layer is a ring of rn spins, in the limit L -~ oo. 
The Hamiltonian is given by 

L ~ L ~ L m 
56= - J I I 2  sOsz+l,j- J~ N stjst,j+l- H N  N so (4) 

l = l j = l  l=1 j = l  l = l j = l  

where we identify the spin variables Sl, m+ 1 =-- St, 1 for each layer l and also 
sL+~j = slj .  The couplings along the layering direction, Jl] '  and normal to 
it, J •  are positive. As will be seen below, the choice of periodic boundary 
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conditions within a layer, i.e., taking the layers to be closed rings, leads to a 
symmetry which affords a considerable simplification in the numerical 
calculation of the thermodynamic free energy. We find that the Yang-Lee 
edge singularity in these models for m < 10 is given by o = - 1 / 2  for 
temperatures ranging from 0.125 to 5 times the critical temperature of the 
two-dimensional Ising model with the same coupling strengths. We also 
show analytically that a = - 1/2 is the correct exponent for arbitrary finite 
widths m in the asymptotic low-temperature limit. From numerical analysis 
of the dependence of the position of the Yang-Lee edge and the free 
energy at the edge on ml (5) we conclude that these quantities approach 
their values in the two-dimensional Ising model with corrections of order 
1/rn2; such behavior has often been observed (19'2~ in models with periodic 
layer connections. 

The next two sections contain our numerical methods and results for 
n-vector chains and Ising strips, respectively, together with arguments 
which go part way toward establishing in general, for these models, the 
assumption leading to a = - 1/2. In Section 4 we present further analytical 
results which show that the assumption is valid in certain limits. The results 
are recapitulated and discussed in Section 5. 

2. NUMERICAL RESULTS FOR n-VECTOR MODELS 

In order to investigate the nature of the Yang-Lee edge singularity in 
one-dimensional ferromagnetic n-vector chains with the Hamiltonian (3), 
we have numerically diagonalized the transfer operators for these models 
with an imaginary magnetic field of strength n H =  ink B Th'.  Although the 
zeros of the partition functions for these models are known to be confined 
to the imaginary field axis only for n < 3, (21) we feel safe in assuming that 
this will be true for higher n as well. This assumption is borne out by the 
results of our calculations. 

The linear operator which, for these systems, corresponds to the 
transfer matrix has the kernel 

A (s, ,s,+ l) = c~-lexp(Ksl �9 s,+, + hs}')) (5) 

where K is given by 

and 

K = J / k ~ T  (6) 

Cn = 2""/21r(�89 9) 

is the surface area of the n-dimensional unit sphere, which is the region of 
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integration. In zero field, this kernel has full n-dimensional spherical 
symmetry, and so the transfer operator can be diagonalized exactly (22) by 
means of the Funk-Hecke theorem. (23) The zero-field eigenfunctions are 
the n-dimensional spherical harmonics (24) Y ( l , m  I . . . . .  mn_2;s), which 
have l/> m I/> �9 �9 �9 /> ran_ 3 t> [mn_2]; the corresponding eigenvalues de- 
pend only on l and are given by 

I~, = ( 2 / n K )  "/2-1F(�89 l(nK) (S) 

where I , ( x )  is the standard modified Bessel function. (25) The /h  decrease 
with increasing/, and each has a degeneracy of 

g(ln) _ n + 21-- 2 ( n + l - -  2 74--i -Z-2- I (9) 

with g0 (E) = 1; note that g}") is just the number of spherical harmonics in n 
dimensions having the given value of I. 

For the numerical work we expanded the field part of the integral 
kernel in spherical harmonics, thus converting the integral operator into an 
infinite matrix; the functions on which the operator acts are then repre- 
sented by an infinite-dimensional vector whose elements are the coefficients 
in the spherical harmonic expansion of the function. (A similar technique 
has been developed for the case n = 2 by Patkos and Rujan. (26)) The 
matrix elements A l , , m ,  ~ . . . . .  m;,_2; l.mt . . . . .  rn._ 2 vanish unless m; = m i for i = 1, 
2 , . . . ,  n -  2, reflecting the fact that the kernel is still invariant under 
rotations of the axes of spin space which leave the direction of the magnetic 
field unchanged. In this case they are given by 

OQ 

Al',mi; ',m i = ~l'  E ( l ' m l  [ l m 6  k O } ( Z / n h " )  "/2-1 
k = 0  

X F(�89 - 1)(�89 + k - 1)ikJn/2+k_,(nh ") (10) 

where J~(x)  is the standard Bessel function (25) and the coefficients 
( l 'm l ]  lml;kO} arise from expanding the product of two Gegenbauer 
polynomials (z7) in a series of Gegenbauer polynomials, namely, 

c n / 2  + m l -  l [ x , ~ C n / 2  + m 2 -  l [ xx, 
l l - -m I I ) 12--m 2 ~. ) 

ll + 1 2 -  m l -  m 2 +  m3 

= E ( l sm 3 1/2m2; llml>C,~/2m+m~-'(X) (1 1) 
[3 ~ m3 

Using standard recursion relations for Gegenbauer polynomials (27) we find 
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that these coefficients are given in certain special cases by 

(jrnJ kin; lO) = 6jk for l = 0 

= [ ( n -  2 ) / (n  + 2 k -  2)] 

•  m + 1)Sj, k+ 1 + (n + k + m -  3)Sj, k_,] 

= ( -  l)(,+m_j)/2 F(�89 + m - 1) 
r(�89 1) 

m! • 
[ �89 + m-j)]~ [ �89 + m - ~)I~ 

I'[ �89 + j  + l -  m ) -  1] 
•189 + j -  1) F[�89 for k = m 

for l = 1 

(12) 

where the arguments of the factorials must be nonnegative integers. The 
coefficients appearing in (10) are most conveniently calculated from these 
starting values, using the recursion relation 

(jrn I km; I0) = [(�89 + k - 2)(j  - m ) / ( l n  + j  - 2)(k - m)] 

x ( j -  1,m I k -  1,m; I0) 

+ [ ( i n  + k -  2)(n + j  + m -  2)/( �89 + j ) ( k -  m)] 

x ( j  + 1 , m l k -  1,m;10) 

- [ ( n + k + m - 4 ) / ( k - m ) ] K j m  I k - 2 , m ; l O )  (13) 

which, incidentally, can be summed explicitly for m = 0 to give 

<jO] kO; I0) = J! 
[ �89 + k -  l ) ] ! [ � 8 9  + I - j ) ] ! [ 3 ( 1 + j -  k)]! 

I ' [n  + �89 + k + / ) - 2 ]  
•189 + j  - 1) r (n  + j  - 2) 

r[ �89 + j  + k - l)  - 1]r[ �89 + k + l - j )  - 1] 
xr[  �89 + l + j -  k ) -  1] 

x jr( �89 1)]2r[�89 +j  + k + 0]  (14) 

where the arguments of all factorials are nonnegative integers. 
Note that the largest eigenvalue of the transfer matrix for zero field,/~0, 

corresponds to an eigenfunction having all azimuthal indices equal to zero. 
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Our numerical computations for m = 0, 1, and 2 indicate that this contin- 
ues to hold for imaginary fields, at least up to the Yang-Lee edge. 
Accordingly, we expect that the dominant eigenfunction is always to be 
found among functions having full cylindrical symmetry about the mag- 
netic field direction. 

From (10) we see that every element in the / ' th  row of any block of the 
matrix resolution of the transfer operator carries a factor/~r. Since I,(x) 
decreases rapidly with increasing p for fixed x, it suffices for numerical 
computations to retain only a rather small part of these infinite matrices. 
The largest eigenvalues of the m a = 0 and 1 blocks of the matrix for n = 15 
spin components at K = 0.5 are plotted against h" in Fig. 1; these eigenval- 
ues were calculated by retaining 14 rows and columns of each block. The 
fractional change in the magnitudes of these eigenvalues when the number 
of rows and columns was doubled was at most 2%, and was as large as this 
only for the smallest eigenvalues displayed; the four largest eigenvalues 
changed by at most a part in 10 7. The eigenvalues were also reasonably 
stable against small changes in the matrix elements. The value K- -0 .5  
corresponds to the mean field critical temperature T o of the model, defined 
by 

k~7~0 = ~ J y  (15) 
J 

6.0 ~ 1  ~ I I 

= 

IXI r~ ~ . . . . .  : m 1 = 1 

2.0 

k2 _ _  _ _  \ . . .  

~ o'., 0'.2 o.3' o'., o.~ 
h" 

Fig. 1. Magnitudes of the largest eigenvalues ?~i of the m I = 0 and m I = l components of the 
transfer operator for the nearest-neighbor 15-vector chain at temperature T =  T o in an 
imaginary magnetic field n i l =  inkBTh" .  The branch point at h " =  ho~0.187 leads to a 
Yang-Lee edge singularity at h" = h o with o = - 1/2. 
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where J,j is the coupling strength between spins i and j .  With our form of 
the Hamiltonian (3), this reduces to T O = 2 J / k  s for arbitrary n. 

The most important feature of Fig. 1, for our purposes, is the square 
root branch point in the spectrum at h" ~0.187, at which the two largest 
eigenvalues meet and become complex conjugates. As pointed out above, 
this branch point represents the Yang-Lee edge, and the merging of the 
two largest eigenvalues leads to an edge singularity with exponent o = 
-1/2. Other eigenvalues then meet in pairs at higher values of h", their 
moduli remaining below that of the dominant eigenvalues. These features 
appeared in all cases for which calculations were carried out, including 
values of n in the range 2 to 60 and temperatures ranging from �89 T O to 2 T 0. 
Thus we see that the Yang-Lee edge singularity is given by o = - 1/2 for 
these models. 

In fact if no eigenvalues of the transfer operator become complex 
before the largest does, then it follows that the largest eigenvalue merges 
only with the second largest and so o = - 1 / 2 .  To see this, let the 
eigenvalues of the azimuthally symmetric component of the transfer opera- 
tor be X0(h"),Xl(h" ) . . . .  in order of decreasing magnitude, and suppose 
that all of the Xi are real for h " <  ho(T ), where X 0 (at least) becomes 
complex at ho(T ). The eigenvalues are the zeros of the Fredholm determi- 
nant, 

D(h",~) = I-I Ix - Xi(h")] (16) 
i>~0 

Taking the derivative of this with respect to h" and setting X = ~o(h") yields 

z) ,= - ( ) rI x,) (17) 
Oh" -d-h:: : i >1 

Since ho(h" ) is the largest eigenvalue, it must have a negative derivative in a 
domain in which it meets another real eigenvalue; since we are assuming 
that all eigenvalues are real for h" < ho(T ), this first branch point must lie 
in a region of the (h", 20 plane in which (OD/Oh") is positive. However, we 
also have 

aD = [ dX, ] 
0h" a=x,fh") ~ dh" !(~'~ - hi) I'[ (Xl - Xi) (18) i>~2 

~)Dx=x2(h,, ) ( d~k2 ) ~]1 tt = -- d - ~  (x0 - ~k2)(~kl -- ~k2) 1-I (~k2 -- ~ki) (19) 
i~>3 

so that the second largest eigenvalue, 2~1, is increasing near the branch point 
as expected; however, the third largest eigenvalue, X 2, is smaller than X 1 
and must be decreasing when (OD/Sh") > 0. Thus only ?~1 can reach 2~0 as 
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h" varies; hence the Yang-Lee edge singularity has tT = - 1 / 2 .  Unfortu- 
nately, although the zero-field eigenvalues /~l are known to be real and 
positive, we have not succeeded in showing that all eigenvalues are real for 
h" < ho(T), so that a complete proof that o = - 1/2 is always the correct 
exponent for these models is still lacking. Nonetheless, the numerical 
evidence points to the conclusion that the Yang-Lee edge singularity for 
these one-dimensional n-vector models is characterized by o = - 1/2 for all 
finite n and at all temperatures T > 0. 

The lack of dependence of o on n is at first quite surprising, since the 
spherical model, which represents the infinite-component or n ~ oo limit of 
the classical n-vector models, (11-13) has a different edge singularity than the 
finite n models, namely, (3) o = + 1 /2  rather than tr = - 1 / 2 .  However, we 
can see how this singularity builds up as n grows by considering the 
positions of the branch points in the spectrum of the transfer operator in 
the (h",n-lln~) plane. (5) These become closer to one another as n in- 
creases (as illustrated in Fig. 4 of Ref. 5), and in the spherical model limit 
we should expect to see infinitely many eigenvalues coalescing at the 
Yang-Lee edge to give the correct singularity. If h0(')(T), the position of the 
edge for fixed n and T, and f(o')(T), the reduced free energy at the edge, 

2 . 0  

1 . 8  

f . 6  

1 . 4  

1 . 2  

~.0 

0.8 
4 

f ( n )  , ~  h ( " )  / /  - 

= = _ 

0 . 6  I I , I  I I I I J I I 
0 t t t ~ t 1 1 

120 60 50 40 3"~ ~ i'g 
1/n 

Fig. 2. Approximants ( =  - ( n  + c)(a n - a . _  1)/(a. - a~)  to the exponent characterizing the 
approach of the Yang-Lee edge for an n-vector chain to its position in the spherical model, 
for a. = h~ 5") and a,, = f o  (5") at a temperature T =  2T 0. The n-shift ~ is varied in order to 
reduce the curvature of the plots. 
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approach their spherical model values with corrections of order 1 /n  ~, we 
may use methods similar to the ratio test (28) to estimate the exponent ~. 
Thus for K = 0.25 we have plotted the approximants - ( n  + e)(a~ - a n_ 1) 
~(an-  aoo) against 1/n in Fig. 2, for a, = h(05") and an =f(o 5"~. These 
approximants should approach a limiting value ~ as n ---> oo. The n-shift, e, 
has been varied in an attempt to reduce the curvature of the ratio plots. We 
conclude that 

~" = 0.73 + 0.03 (20) 

represents the data fairly well for K = 0.25. Similar analyses for K = 0.5 
(T  = To) and K = 1.0 (T  = ' To) confirm this result; the values of h0 (~") and 

f0 (5") are tabulated in Ref. 29. Note that higher-order analytic corrections to 
the behavior of h0 ~") and f0 (n) can cause large amounts of curvature in the 
ratio plots. For example, 1In terms in the expansion of h0 (") for large n 
would give rise to terms of order n -  1+r  n -  1/4 in the approximants; such 
terms decay only very slowly as n grows, and so make extrapolation 
difficult. 

3. NUMERICAL RESULTS FOR ISING MODELS 

A program of calculation similar to that for the n-vector chains has 
been carried out for ferromagnetic m x oe Ising strips with the Hamilto- 
nian (4). For these models, zeros of the partition function are known to lie 
only on the imaginary magnetic field axis(2l; consequently, we take H 
= ikBTh" purely imaginary. The task of numerically diagonalizing the 
transfer matrices for these models is greatly simplified by the symmetry 
which arises from the choice of periodic boundary conditions within a 
layer. Specifically, if the spins in layer l are labeled s ll, sl2, �9 �9 �9 sl,, as in (4), 
then the interactions within and between layers l and l + 1 are unchanged 
if, for both layers, the spin indices are cyclically permuted, (1, 2 , . . . ,  m) 
-~(2,3 . . . . .  m, 1), or inverted, (1,2 . . . . .  m ) ~ ( m , m  - 1 . . . . .  1). It fol- 
lows that the transfer matrix can be block diagonalized by choosing the 
states of a layer to be those linear combinations of the basic spin configura- 
tions (defined by specifying the value of each spin in the layer) which 
transform according to the irreducible representations of the corresponding 
symmetry group. Only the matrix elements between states belonging to the 
same representation can be nonzero. (3~ 

Now note that when the magnetic field is real, the Fr6benius-Perron 
theorem (31) tells us that a single, nondegenerate eigenvalue of the transfer 
matrix will have a greater modulus than any other. Furthermore, this 
dominant eigenvalue will be real and will correspond to an eigenvector 
having only positive components. The nondegeneracy of the eigenvalue 
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implies that its eigenvector transforms according to a one-dimensional 
representation of the symmetry group of the system. In such a representa- 
tion, the group elements must be represented by the complex roots of unity, 
so that applying any symmetry operation to the dominant eigenvector 
yields the same vector multiplied by a root of unity. However, the opera- 
tions of cyclically permuting or inverting spin labels merely exchange 
components of the eigenvector, thus producing a vector having only posi- 
tive components. Since this new vector must be the old eigenvector multi- 
plied by a root of unity, that root must be + 1. In other words, the 
dominant eigenvalue in real fields corresponds to an eigenvector which is 
invariant under any symmetry of the Hamiltonian which only interchanges 
spins. 

One can also see that the dominant eigenvector in an imaginary field 
also belongs to the fully invariant representation of the symmetry group in 
both the high- and low-temperature limits, as we now show. Both the state 
with all spins "up" and that with all spins "down" belong to this representa- 
tion; any state in any other representation must have both up and down 
spins. Thus in the low-temperature limit, the ratio of the largest nonin- 
variant eigenvalue to the largest invariant one must vanish at least as 
quickly as exp(-  J •  B T). 

In the high-temperature limit the m • ce strip behaves as a collection 
of m independent one-dimensional chains. The eigenvalues of the transfer 
matrix for a single chain are given by 

~+_ = exp(K)(coshh + [sinh2h + e x p ( - n K )  ] 1/2} (21) 

with 

and so the eigenvalues for the strip are X k+ 2t_m-k for k = 0, 1 . . . .  , m, each 
having degeneracy m ! / k !  (m - k)!. The largest invariant eigenvalue is )t~, 
which is nondegenerate, and so the largest noninvariant eigenvalue is 
)t +m-l~_, which is smaller in magnitude for h" < ho(T). Accordingly, we 
will assume that this continues to hold at intermediate temperatures, and so 
seek the dominant eigenvector of the transfer matrix among vectors which 
are invariant under cyclic permutations and inversions of spin labels. 

Numerically, this simplification is enormous. For an m • oe strip, the 
full transfer matrix has dimension 2 m, while that part of it connecting 
vectors which are invariant under cyclic permutations only has a dimension 
given by 

d m = ~ b k (23) 
k]m 
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where the sum runs over all divisors of m (including 1 and m), while b k is 
the number of configurations of a layer of k >t 1 spins which are not 
reproduced by cyclically permuting the spins by less than k places. The b k 
can be defined and calculated from the identities 

lb l= 2 k for each k/> 1 (24) 
t lk 

so that 

b 1 = 2, b z = 1, b 3 = 2, b 4 = 3, b 5 = 6, 

d~ = 2, d 2 = 3, d 3 = 4, d 4 = 6, d 5 = 8, 

b 6 = 9, etc. 

(25) 
d 6 = 14, etc. 

(26) 

These identities follow from the fact that each configuration of a layer of k 
spins enters into exactly one cyclically invariant combination, which also 
contains contributions from the l -  1 distinct configurations obtained by 
permuting it by 1, 2 , . . . ,  1 - 1 places if the configuration is reproduced by 
permuting it by l places. Such a state may be viewed as consisting of k / l  
copies of a configuration of an/-spin layer. Classifying the various configu- 
rations of a layer of k spins by respective values of l leads to (24). 

For m >/6, the  requirement of invariance under inversions further 
reduces the size of the matrix to be diagonalized. For example, for m = 8 
the full transfer matrix has dimension 28 = 256 and we find d s = 36, but 
when inversion symmetry is included the dimension of the invariant part of 
the matrix is only 30. Similarly, for m = 9 the dimension of the matrix to be 
diagonalized is reduced from 512 to 46, and for m = 10 from 1024 to 78. 

Figure 3 shows the dependence of the magnitudes of the eigenvalues of 
the transfer matrix on the imaginary field, h = ih", for the 4 • ~ strip with 
JII --- J •  ~ J" The temperature is chosen to be T = 2Tc,2, where To, 2 is the 
critical temperature of the two-dimensional Ising model with the same 
coupling strengths, given for this isotropic case by 

To,2= To / [21n(~-  + 1)] ~ 0.56731T 0 (27) 

where T 0, the mean field critical temperature defined by (15), is T o 
= 4 J / k a .  The important features of this plot are much the same as those 
of Fig. 1: the two largest eigenvalues meet at a square root branch point at 
h" = 0.078~r, giving rise to a Yang-Lee edge singularity with o = - 1/2; 
the other eigenvalues merge in pairs at higher values of h". The ranges 
0.287~r ~< h" <~ 0.293~r and 0.495rr <~ h" <~ 0.505~r, in which the two domi- 
nant eigenvalues are again real and unequal, correspond to gaps in the zero 
density with square root (o = - 1 / 2 )  singularities on either side; however, 
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2 , 0 -  ~ T =  2Tr 

4 x oo I S I N G  S T R I P S  

X~=X3 ~ Xo 

X )t )t I ) t l  I ) t l  IX I IX I )t2 5 = 6 = 7 = 8 = 9 = lO = 11 

- -  ~ X~2=X,3 X,, 

0 i i i I 
0 1/8 'Tr  1 /4" r r  31817  l / 2 - r r  

h" 

Fig. 3. Magnitudes of the eigenvalues of the transfer matrix for the 4 • oe Ising strip with 
periodic layer connections at a temperature T = 2 T  c, 2 in an imaginary magnetic field H 
= i k ~ T h " .  T h e  eigenvalues which, for small h ' ,  are labelled 2~0, Xl, 2t5, ~10, X11, and )t]5 belong 
to the invariant representation of the symmetry group. 

we are more interested in the branch points closest to the real h axis. There 
are two pair of degenerate eigenvalues and one set of three degenerate 
eigenvalues plotted, so that all 16 eigenvalues of the transfer matrix in fact 
appear on the figure. These degenerate eigenvalues are among those which 
belong to noninvariant representations of the symmetry group; their degen- 
eracy is due in particular to the inversion symmetry described above. 

Our numerical calculations confirm that the same salient features--the 
two largest eigenvalues meeting at some value of h ' ,  with other pairs 
coming together at higher values of h ' - - appea r  for all values of the 
parameters we have examined. Specifically, we have calculated the eigen- 
values of the invariant block of the transfer matrix for strips of width 
m < 10 at temperatures in the range 0.125Tc, 2 < T < 5To, 2, with couplings 
JIP and J•  not necessarily equal. 

Note that the argument of Section 2, to the effect that if all eigenvalues 
are real for h" less than its value h0(T) at the Yang-Lee edge, then the edge 
singularity is given by o = - 1 / 2 ,  is still valid here, with the Fredholm 
determinant replaced by the secular determinant of the invariant block of 
the transfer matrix. Again, we have not succeeded in showing that all 
eigenvalues are real for h" < ho(T ) and so have not proven that o = - 1/2 
is correct; however, on the basis of our numerical evidence we expect that 



28 Kurtze 

o = - 1/2 characterizes the edge singularity for ferromagnetic m X ce Ising 
strips in general. 

If we let the width m of the strip become infinite, (5) the value of o 
must cross over to that appropriate to the two-dimensional Ising model. As 
in the spherical model limit of the n-vector chains, this appears to happen 
by means of a coalescence of infinitely many branch points in the eigen- 
value spectrum as m--> ce. (This is illustrated for m up to 10 in Fig. 2 of 
Ref. 5 and Fig. 3.5 of Ref. 29.) The buildup of the two-dimensional 
singularity may be analyzed (5) using finite-size scaling ideas, (19) namely, 
that the position of the Yang-Lee edge, h(om)(r), and the value of the 
reduced free energy at the edge, fo(m)(T)= m-qn2to[T,h(o")(T)], should 
differ from their infinite-m limits by amounts of order 1 /m ~ The value of 
the exponent 0 should be 1/Pc, where u C is the exponent describing the 
divergence of the correlation length at the Yang-Lee edge in the two 
dimensional Ising model, (14) although the value 0 = 2 is often observed in 

I -- I I I I - - T - -  

T = 3Te,2 h ~ ( m  ) 
m x co IsLng strLps 

/" .~!  

/ / ' / . /  

I I I I I I / 
I I I ~ I ! 1 
20 10 9 8 7 6 5 

1/m 

Fig. 4. Approximants  # = 1 - (m + ()(am - 2a m_ l + am 2)/(am - am- 1) to the exponent  
characterizing the dependence of the position of the Y a n g - L e e  edge in rn • m Ising strips on  
the width m for large m. We take a m = h~ m) and a m = fo (m) for a temperature  T = 3 To,z, and 
vary c in an at tempt to reduce the curvature of the plots. 
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systems having periodic boundary conditions. (19'2~ If an estimate of v c can 
be obtained, then a hyperscaling argument (~4) leads to an estimate of a, 
namely, 

o = a t ,  c - 1 ( 2 8 )  

with d = 2 dimensions in this case. The high-temperature series estimate (15) 
a = - 0 . 1 6 3 _  3 for the two-dimensional model then yields v c = 0.419 + 2 
or 1/vc = 2.39 ___ 1. 

We have analyzed the variation of h(om)(T) and f(om)(T) with m by 
methods akin to the ratio test. (28) Thus for T = 3 T~, 2 we have formed the 
approximants 1 - (m + ~)(a m - 2am_ 1 + a m _ 2 ) / ( a  m - am_l)  for a m = h(o m) 
and a m = f(o m). These approximants, which should approach 0 as m ~ ~ ,  
are plotted against 1 / m  in Fig. 4 with m-shifts c chosen to reduce the 
curvature of the ratio plots. The data are consistent with 

0 = 2.0 _ 0.2 (29) 

which also agrees with similar analysis for T = 5T~, 2. (See Ref. 29 for 
tabulated values of h~o m~ and f~om).) Since the expected value of 1/v~ is 
greater than 2, one might expect that any possible corrections of order 
1 / m  1/~ could well be masked behind 1 / m  2 corrections. 

4. A N A L Y T I C A L  RESULTS 

Although we have not found a proof that o = - 1 / 2  characterizes 
the Yang-Lee edge singularity for all temperatures in all of the one- 
dimensional models considered above, we have succeeded in showing this 
for (i) n-vector chains in the asymptotic high-temperature limit, and (ii) 
m • oo Ising strips in the asymptotic low-temperature limit. For the n- 
vector chains this is just an instance of a more general result, namely, that o 
is independent of n in the high-temperature limit for n-vector models on a 
lattice with general nearest-neighbor interactions(15); however, for the 
one-dimensional chains we are able to show this directly, without appealing 
to the solution of the one-dimensional Ising chain. As this argument is 
much simpler than that for the Ising strips, we present it first. 

In order to examine the behavior of the eigenvalues of the transfer 
operator for one-dimensional n-vector chains at high temperatures, we turn 
to the matrix resolution (10) of the integral operator. For high tempera- 
tures, the reduced coupling K defined in (6) is small, and so we evaluate the 
zero-field eigenvalues #l asymptotically, using the small-argument form of 
the modified Bessel function, 

I~(x) ~ ( � 8 9  + 1) (30) 
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to obtain, from (8), 

+ l ) ] ( �89  (31) 

Since every element of any row of the matrix carries a factor St = O(Kl)  
for some / ,we  need only retain those rows carrying factors of/~0 or/~l in 
order to find the eigenvalues to leading order in K. This gives us one 
eigenvalue of order K in the m 1 = 1 component of the matrix; more 
importantly, the azimuthally symmetric (m 1 --0)  component reduces to a 
2 x 2 matrix, given explicitly by 

[ Cn(�89 - l)J"/2-1(nh") iC"(�89 ] (32) 

[A,,,] = [ iKC"(�89 KC,( �89 - 1)S,/2_ l(nh") 

where we have set 

C,, = (2/nh)  "/2- lF(�89 - 1) (33) 

The eigenvalues of this matrix are 

~k+ 1 1 _ = -iCn(~n - 1)Jn/z_l(nh" ) 

• ( ,  + K r  - - 

(34) 

and so the Yang-Lee edge singularity is clearly given by o = - 1/2  in the 
high-temperature limit; in addition one can see that the edge lies at 

ho(T ) ~ Xn/2_ 1 - [Jn/2(12Xn/2,1)/(�89 - 1)J~/2_l(nXn/2_l)]K 1/2 (35) 

where x = nXn/2_ t is the smallest zero of x-n/2+ I j n / 2  - l ( X ) -  

We analyze the m • oo Ising strips in the low-temperature limit by 
expanding in the variable 

u = e x p ( - 2 J •  ) (36) 

which is small for positive J •  and small T, while treating the coupling along 
the layering direction exactly. To zeroth order in u, the m spins in any layer 
are frozen together into the same state (+  1 or - 1 ) ,  and so the strip 
effectively reduces to a single Ising chain with nearest neighbor coupling 
m Jr1. The two largest eigenvalues are then given by (22) (with an overall 
factor of u -m/2) with K now denoting 

K = m J J k ~ T  (37) 

All other eigenvalues vanish to this order. Note that the eigenvectors 
corresponding to the dominant eigenvalues are linear combinations of the 
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states having all spins "up" and all spins "down," and so belong to the 
invariant representation of the symmetry group. 

In order to calculate the leading corrections to these eigenvalues, we 
define the transfer matrix A in such a way that the element connecting a 
state a having spins sl, s 2 . . . . .  s m and a state a '  with spins s'~, s~ . . . . .  s,~ is 
given by 

A~, = exp( - % , , , / k  a T )  (38) 

where 

~ a a ' =  --JH ~ SjS;-- �89177 ~ (sjsj+ 1 "l- S'S t , j ,J+l)- �89 ~ (sj + sj) (39) 
j = l  j = l  j = l  

Then the only entries in the transfer matrix which do not vanish to relative 
order u are those connecting two states in which a total of at most two J •  
bonds are unfavorable. This occurs only if one of the states has all spins 
either "up" or "down" and the other has k contiguous up-spins and m - k 
contiguous down-spins for k - 0, 1 . . . . .  m. Now since in zeroth order the 
dominant eigenvectors belong to the invariant representation of the symme- 
try group, we need only consider contributions from states which are 
invariant. We let a = 1 denote the state with all spins "up," a = 2 the state 
with all spins "down," and a = k + 2 the state which is invariant under 
cyclic permutations of spin labels and is built up of spin configurations 
having m -  k contiguous up-spins and k contiguous down-spins, with 
k = 1, 2, . 0 . ,  m - 1. With this labeling of layer states, the transfer matrix 
takes the form 

I A~,,] = 

P Q alu . . .  am_lu 

R S blu " ."  bm_~u 

ClU dlU 

C m _ 1 bl d m -- I u 

where we have dropped all entries of relative order u 2 and set 

P = exp[ fim(Jii + Jj_ + H ) ]  S = exp[ flm(Jii + J •  H ) ]  

Q =  R = exp[ f lm( - J l l  + :_L)] 

ak = c k = Prn'/2exp[ f l k ( - J i r  - �89 

bk = 4 = Qml/2exp[ flk(Jit - �89 

(40) 

(41) 
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One can readily show that the secular equation for the matrix (40) is 
given by 

0 = X  " -2  X 3 - ( P + S ) X  2+ P S - Q R - u  2 ~ (akC k+ b kd ~)  ,k k=l 
m-1 } 

+ u 2 ~, (Pbkd k - QbkG - Rakd k + SakCk) (42) k=l 
Note the absence of terms of order u in this equation; this is due to the fact 
that any term in the expansion of the determinant d e t ( A -  M) which 
contains at least one factor of order u must in fact contain at least two. 
Similarly, entries in the matrix which are of order u 2 will contribute to the 
secular equation only in order u 3. To zeroth order in u, the nonzero roots of 
(42) are 

X+ = �89 + S)  +- � 8 9  S)  2 + 4QR] '/2 (43) 

The perturbation terms may be viewed as affecting the eigenvalues in two 
ways: (i) shifting the position of the Yang-Lee edge at which •+ = 2t_, 
and (ii) changing the magnitude of the eigenvalues at the edge. Accord- 
ingly, we seek the leading-order corrections to (43) by writing 

X - - � 8 9 1 8 9  1/2 (44) 

fixing x and y by requiring that (42) be satisfied for both choices of sign. 
This leads to 

f mk~ 1 ] /  
x = �89 1 (Pbkdk - QbkCk -- Rakdk + SakCk) (PS  - QR)  (45) 

1 y = 4 2 (akCk + bkak) + (P + S ) x  (46) k=l 
provided PS - QR ~ O. For our choice of parameters (41) this is satisfied if 
JJI is nonvanishing. The explicit expressions obtained for x and y are not 
very enlightening, but they have one important feature: both carry an 
overall factor of m. Thus we see that, although the perturbation preserves 
the value o = - 1/2 of the Yang-Lee edge singularity forfinite widths m in 
the low-temperature limit, our analysis must break down, as expected, for 
infinite m, which represents the two-dimensional Ising model. 

For high temperatures, it is natural to attempt an expansion in powers 
of the variable K l = J •  This gives good results for an Ising chain 
with a ferromagnetic second-neighbor interaction, J2~sisi+2, when one 
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expands the eigenvalues of the transfer matrix in powers of J2/kBT in a 
manner similar to that described above; this procedure verifies that o = 
- 1/2 is the correct exponent of the edge singularity in this model at high 
temperatures. However, in the m • oo strips one encounters severe difficul- 
ties in trying to apply this method. The problem stems from the fact that if 
one neglects K• the model reduces to a set of m independent Ising chains. 
Accordingly one finds that the eigenvalues of the transfer matrix in this 
limit are all of the form 7~ k )k m -  k for k = 0, 1, m, where )t+ and )t_ + - -  �9 �9 �9 , , 

the eigenvalues for the Ising chain, are given by (21) with K =  JH/kBT. 
Thus all of the eigenvalues are degenerate at h " =  s in- l [exp(-2K)] ,  and 
this degeneracy makes the analytical problem of finding even the leading 
correction to the largest eigenvalues prohibitively difficult. Some idea of 
this difficulty is provided by the example of the 2 • oo strip. In this case the 
invariant block of the transfer matrix has dimension 3, and so its secular 
equation is cubic. By applying the well-known prescription for obtaining 
the roots of a cubic polynomial, one finds that the leading correction to the 
position of the Yang-Lee edge is of order K 2/3. For wider strips the 
appropriate secular equation is of higher degree, and so the difficulties 
encountered will be worse. 

Finally, we note that our matrix resolution of the transfer integral 
operator for n-vector chains does not lend itself to a large-n expansion of 
the eigenvalues. To see this, consider the azimuthally symmetric (m 1 = 0) 
component of the infinite matrix. From the expression (14) for the coeffi- 
cients ( j0]  k0; 10> and standard asymptotic expansions of the Bessel func- 
tions, one finds that the (l', l) element of this matrix is given asymptotically 
for large n by 

' + 

(47) 

where the coefficient D n depends on n but not on the indices/ 'and l. Thus 
every element in the / th  column carries a factor n I in the large-n limit. The 
inapplicability of our matrix methods in the spherical model limit of 
infinite n is to be expected, since the evidence presented in Section 2 leads 
to the conclusion that infinitely many eigenvalues of the transfer operator 
become degenerate at the Yang-Lee edge in the limit n ~ oo. Furthermore, 
this evidence suggests that attempts to carry out such expansions may well 
encounter nonintegral powers of 1/n. Nevertheless, it remains an interest- 
ing and, probably, tractable problem to understand in more detail the 
crossover from o = - I / 2  for finite n to o = + 1/2 at n = oo and so see 
how the exponent ~ estimated in (20) enters analytically. 
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5. DISCUSSION 

The exponent a = - 1/2 is, as noted above, known to be correct (2) for 
the one-dimensional Ising chain at all temperatures. Thus a also takes this 
value for n-vector chains with nearest-neighbor interactions, for n finite and 
nonnegative, in the asymptotic high-temperature limit. (~5) Moreover, a 
= - 1/2 is also correct for ferromagnetic one-dimensional n-vector chains 
with negative n at temperatures slightly above the critical temperature (32) 
(which is positive in these models(32)). The numerical analyses presented 
above indicate that this value of a should in fact be characteristic of all 
one-dimensional models with short-range interactions, in accordance with 
the exact results. Although we have not succeeded in proving this in 
general, the analytical work of Sections 2 and 4 is most suggestive, and 
engenders the hope that complete proofs may ultimately be found. 

Our work adds significantly to the somewhat limited numerical evi- 
dence presented by Kortman and Griffiths (4) in support of the conclusion 
that for a given model, a is independent of temperature for temperatures 
above critical. This is also predicted by renormalization group analysis. (14) 
It is known that a is independent of n in the asymptotic high-temperature 
limit (15) for n-vector models on a lattice of any dimensionality with gen- 
eral interactions between nearest-neighbor spins. Thus temperature- 
independence of a would, barring nonuniformity of the T--) o0 limit, imply 
its independence of n for the models we study. All our results accord with 
this expectation. 

Strong analogies have been pointed o u t  (4'14) between the Yang-Lee 
edge singularity and critical behavior; these have been invoked (14) in 
proposing relations among various exponents characterizing the edge, such 
as the hyperscaling relation (28). One such analogy is provided by the 
transfer matrix method, which predicts that the correlation length diverges 
at the Yang-Lee edge. The observed independence of a on the width m of 
the Ising strips is to be expected on this basis; sufficiently near the edge, the 
correlation length is large enough for the system to perceive its one- 
dimensional nature. 

Our numerical results indicate that the crossover of the exponent a 
from its finite-n value to its spherical model value, and that from its 
one-dimensional to its two-dimensional value, both proceed by a common 
mechanism, namely, an accumulation of branch points in the spectrum of 
the transfer operator or matrix. One may hope that it will prove possible in 
the future to analyze the density of these branch points and of their 
amplitudes in the infinite-component or infinite-width limit. Note that the 
amplitudes can be obtained from the rate of approach of the dominant 
eigenvalue to its value at the edge. (29) This should, in turn, show how the 
spherical model exponent, (3) a = 1/2, arises, and perhaps also lead to the 
value of a for two-dimensional models. 
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